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Abstract: Starting from geraniol we prepared the tricyclic spiroketal substructure 5a of 
saponaceoliie molecules. ‘Cis- and tram- tetrahydropyran linalool oxides 18a and Mb were 
also synthesized during these studies. 

The saponaceolides A - D (1 - 4) form a small group of triterpenoids recently isolated by us from the 
mushroom Tricholom sapmaceum.‘~2 Our synthetic efforts in this field were stimulated by the 
unprecedented nature of the base structure of compounds l- 4, their in vitro anticancer activity on a human 
colon adenocatcinoma cell line and their intriguing biosynthetic Origin. In this paper we describe the synthesis 
of the trioxa-tricyclic spiroketal substructure Sa which was not found so far in other natural products3 

R-OH El’-R”-H saponaceolide A (1) 
R=R'=R"=H saponaceolide B (2) 
R-R'-OH R'-H saponaceolide C (3) 
R=R"=OH R'=H saponaceolide D (4) 

5a R=H, X=0, Y-x2 
5b R-H, X-CH& Y-o 
SC c R-Z, X=0, Y-CH2 

The complex hemiacetaLspiroketal5a may theoretically be formed by acid catalyxed spirocyclixation 
of the fully functionalixed monocyclic precursor 6 (Scheme 1). Extending to our particular case this general 
strategy for sphoketal construction4, we wen well awsre of two drawbacks usually not present in assembling 
simpler bicyclic spiro structures: the greater strain of the tricyclic system Sa with respect to 6 and the 
impossibility of taking full advantage of the so-called ano&ric effec+ in establishing the desimd 
configuration of the C-6’ spiro center (saponaceolide numbering). In fact. given the boat conformation of the 
l&dioxane ring in Sa-b, neither configuration at C-6’ can have the preferred bis-axial C-O orientation.6 
However, the merit of this approach is to be highly stereoconvergent (6 contains only one stereocenter) and 
we expect that in the synthesis of the natural compound (SC), steric biases of the C-9’ substituent should 

2685 



2686 

dictate the desired stereochemistry at the spiro carbon. Following our retrosynthetic analysis (Scheme 1) we 
expected that alkylation of the epoxide 8 by ~JI appropriate Cs nucleophiie would secure the required 
precursor of the key intermediate, the hydroxyketone 6. As compound 8 is formally a monotetpene, it can in 
principle be obtained by a careful functionalization of the madily available geraniol (9)W which then provides 
ten of the 13 carbons of the target molecule. 

Scheme I- Retmsynthetic analysis of saponaceolii spiroketal substructure SP 

Scheme 2 - Reagents and conditions: a) VO(acach, tBuOOH, C&J+ 87%; b) M&l, Et3N, CH@,, 90%; 

c) OsO.,, NMO, Py-tBuOH-H@-THF, 93%; d) I-Naphthyl isocyanate. Py-C!H$I!lz. 9296; e) cat. CSA, 

CH&!I~. - 20°C to 22T, 40 h, 62% f) K&O~, MeOH, 86%; g) HCXCH$ITHP, THF, “B&i, -4OT 

then BF3.Eb0, -7OT to -4O’C, 17 h, 30%; h) Hz, 5% W-C, EtOH, 9196; i) MeONa, MeOH, reflux, 

90’. 98%; 1) TPAP, NMO.4 A molecular sieves, MeCN, 90’. 735; m) THF, 1N HCl, 22T, 3h, 85%. 

Diastereoselective Sharpless epoxidation’ of geraniol gave the corresponding epoxy alcoh01,~ which 
was easily converted into the methanesulphonate 10 (78% over two step~).~ For the dihydmxylation of 
compound 10, the easy isomerization of diol 11 (R=H) to tetrahydmfurans 17 (R=H) by S-exe-tet cyclization, 
requimd modification of the original Van Rheenen osmiiation pro~Iure.~ Solvent composition was carefully 
adjusted until compound 11 (R=H) was obtained in excellent yield (93%) using the quaternary mixture 
Py-THl-‘BuOH-H@ (0.2:11:3.4:1.2). The secondary alcohol of 11 (R=H) was then protected as 1-naphthyl 
carbammate (92%) since man traditional protective groups (‘TIIP, TBDMS, MEM, SEM, PhcO) proved 
unsatisfactory either for the low yields or the poor discrimination between the 2’ and 3’ OH gmups. 
11-Acetate (R=Ac) was indeed obtained in quantitative yield, however acid conditions employed for the 
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subsequent catalytic cyclixation (vide inbra) readily promoted a 1.2 shift of the acyl residue, giving rise to a 
mixture of tetrahydrofuran (16, R=Ac) and tetrahydropyran (17) compounds. As anticipated, the more 
sterically demanding 2&dimethyl~ropanoyl group was not prone to migration. In this case protection of the 
secondary alcohol was extremely sluggish. 

16 17 18r R- BH 
16b R=aH 

CSA catalyzed epoxy ring opening of carbammate 11 afforded the desired tetrahydropyran 12 (62%) 
which resulted enriched in the cLr stemoisomer. lo To confinn the structure each stemoisomer was separately 
converted [ a) M&l, EtsN b) Zn/NaI, DMF, teflux Ill into the correqonding cis and wans tatrabydmpymn 
linalool oxides 18a-b.1~13 

Conversion of the entim diastereomeric mixture 12 to epoxide 13 paved the way to the crucial C, 
elongation step by alkylation with an appropriate nucleophile (Scheme 1). The reagent prepared fmm 
THlWCH@sCLi and BF3Ets0 t4 affotded the desired neopentyl alcohol 14 with complete ngio- and 
chemoselectivity, albeit in only 30% yield. LiC104 catalyxed alkynylationls of 13 gave looter results. 
Similarly higher order mixed alkenylcuprates,16 prepared via hydrostannatlon17 or hydroximonadonl* of 
protected propynol failed to react with epoxide 13. Catalytic hydrogenation of the triple bond of 14, followed 
by secondary OH deprotection and TFAp oxidation t9 of the resulting dial produced diketone 15 in 65% 
overall yield. Upon exposure to 1N HCl at room temperature for 15 h, compound 15 l&enventTHPremoval, 
followed by smooth spirocyclization. IR, EIMS and CIMS spectra of the product (85 96 yield) fully supported 
the targeted trioxa-tricychc model structure, while b&fR spectra tevcakd a mixture (51 ratio) of the two 
spiroketals S-b. The stmochemical assignments at the spiroketal junction of the separated major 
diastereomer was de@rmined by NOE measurements, two of the most informative of which are illustrated in 
the structure of 19." 

OH 

NOE9% , 

Furthetmore, the ‘H- and 13C!NMR signals2’ of the major spimketal Sa are in perfect agreement with 
those assigned to the cortesponding subunit of saponaceolides A - D (1 - 4).*32 

In conclusion. synthesis of the sapo~aceolide trioxa-tticyclii moiety was completed in 11 steps fmm 
geraniol following a biomimetic approach. Further studies on the total synthesis of these compounds are in 

Progress. 
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Lipshutz, B. H.; Kato, K. Tetrahedron ht. 1X)1,32,5647. 
TPAP = Tetrapropylammonium perruthenate (Griffith, W. P.; Ley. S. V. Aldrichimica Acta 1990, 
23.13). 
For comparison we performed the same NOE experiments by irradiation of the corresponding signals 
of saponaceolide B (2).lb* n NOEDS spectra were identical with those of synthetic spiroketal Sa. 
‘HNMR (300 MHz, CDCI,) of Sa: 8 1.09 (s, 3H, Hs-14’),‘1.21 and 1.29 (2s. 2x3H, Hs-12’ and 
Hs-13’), 1.4-1.7 (m, 6H, Hs-8’. Hz-g’, H-4’a, H-7’a), 1.86 (m, lH, H-4’b). 1.95 (bd, lH, J = 12.7 Hz, 
H-7’b), 2.0 (ddd, lH, J = 13.0, 11.0, 1.8 Hz, H-3’a), 2.17 (ddd, lH, J = 13.0, 11.0, 1.8 Hz, H-3.-b), 
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(CH3, C-12’), 27.9 (CH?, C-3’), 28.5 (CH2, C-4’). 29.3 (CH2, C-7’), 61.1 (C!HZ, C-15’), 72.9 (C, 
C-5’), 77.2 (C. C-l!), 96.6 (C, C-2’). 101.3 (C, C-6’). 
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Note added’ in proof: Prof. Kim Albizati has recently synthesized G-methyl Sa via 2-fury1 ketone oxidation 
rearrangement (De Haan, R. A.; Heeg, M. J.; Albizati, K. F. J. Org. Gem. 1993,58,291). 
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